						🔒 Log In	ACS	ACS Publicatio	ns C&E	N CAS	
CCS CHEMICAL & EI		erving The Chemic	cal, Life Sciences &	Laboratory W	/orlds	ぐたf Search	. 709	About Subscribe	Advertise Conta	act Join ACS 😨	
Home	Magazine	News	Department	S	Collections	5	Blogs	Multim	iedia	Advanced Search Jobs	
	-		-				-				
Home > Volume 93 I	ssue 37 > Study Paints New Po	rtrait Of Cell's Response	e To Stress								
	e 37 p. 7 News of The	Week						MOST PO	OPULAR		
Issue Date: September 21, 2015 1 2 Study Paints New Portrait Of Cell's Response To Stress f I								Viewed	Commentee	d Shared	
Cell Biology: Protein aggregates formed during heat shock aren't necessarily a death sentence									Nuclear Forensics Shows Nazis		
By Celia Henry Arnaud								Were Nowhere Near Making Atomic Bomb			
Department: Science & Technology News Channels: Biological SCENE Keywords: protein aggregation, heat shock, stress response								Nobel Pr Medicine	mura and Youyou Tu Win 2015 Nobel Prize for Physiology or Medicine Mealworms Munch Polystyrene Foam		
	ok picture of what happe DOI: 10.1016/j.cell.201		ells stressed by hea	t might need	to be redrawn,	according t	o a new study	Hydroca	lene Fills In A Irbon Gap		
The conven	tional understanding is tl	hat misfolded	+]Enlarge					Who Will	Win The 2015	Nobel Prize	
	se damaged proteins ag heat shock. Those aggre			4				RELATED	O ARTICLES		
proteins nee	ed to be fixed or, if they c nd disposed of.	0	R	28	NEGI		\sim	A Quick Aggreg	k Snapshot of F jation	Protein	
	n Drummond of the Un	,	Unfolded		10	_					
are reversib	d coworkers found that the and certain proteins management of "When we	naintain their	protein	А	ggregate		Degraded				
	e aggregated. "When we m severe heat shock, we			/		2					
into their co Drummond	all aggregates are disass mponents without degrad says. "No matter how sev , proteins emerge intact of	dation," verely they've			3						
recovery."			Folded		(20					

Aggregates

Newly synthesized, unfolded proteins (top row) and mature, folded proteins (bottom

row) respond differently to heat shock. Unfolded proteins form aggregates that can be reversed by molecular chaperones but are often degraded. Folded proteins form

reversible aggregates that collect into granules. During recovery, chaperones help

= Molecular chaperone

Granule

Credit: Allan Drummond

The traditional heat-shock picture comes from work that focused on the molecular chaperones that guide the repair of aggregating proteins. Drummond and colleagues instead studied the aggregating proteins themselves to arrive at this new picture.

The researchers studied the heat-shock response in yeast cells. Their isotope labeling strategy enabled them to distinguish between proteins that were mature and ones that had been newly

synthesized at the time of heat shock. They separated aggregating proteins from soluble proteins by ultracentrifugation and identified them using high-resolution mass spectrometry.

protein

🚽 = Heat shock

FATE FROM FOLDING

the aggregate disassemble into functioning proteins.

They were able to detect nearly 1,000 proteins, about 180 of which formed aggregates.

The researchers also used fluorescence microscopy to visualize the heat-triggered formation of protein-containing granules in cells, which are the result of protein aggregation.

Drummond thinks that the conventional heat-shock model will still hold true for some proteins. Newly synthesized proteins "are very threatened by heat because their folding process is truly disrupted," he says.

The work "has major implications for how we think about protein homeostasis and quality control," says **Kevin A. Morano**, a microbiologist at the University of Texas Medical School, in Houston, who studies stress responses in yeast. "We can no longer assume that all aggregates detected via proteomics or fluorescence or electron microscopy are indicators of protein damage." Instead, he says, these aggregates could be a way the cell protects proteins from damage.

Justin L. P. Benesch, a biophysical chemist at the University of Oxford who studies heat-shock proteins, says: "This work makes clear that the dogma of cellular aggregates being potentially dangerous protein scrap-heaps is far too simplistic. We have much to learn about the cell's response to stress."

Chemical & Engineering News ISSN 0009-2347 Copyright © 2015 American Chemical Society

Leave A Comment

Thank you for your comment. Your initial comment will be reviewed prior to appearing on the site.

Name

Email Address(Required to comment)

Chemical & Engineering News

Home	Subscribe	Help	ACS.org			
Magazine	Advertise	Sitemap	ACS Publications			
News	Contact	Search	CAS			
Departments	Join ACS	ocaron				
Collections	About					
Blogs	🚅 t f 🎽 🗖 🔊	Advanced Search				
Multimedia						
Jobs						

Copyright ©2015 American Chemical Society

American Chemical Society